types.SQLAlchemySource
SQLAlchemySource(engine, table_name)
A DataSource implementation that supports multiple SQL databases via SQLAlchemy.
Supports various databases including PostgreSQL, MySQL, SQLite, Snowflake, and Databricks.
Methods
cleanup
types.SQLAlchemySource.cleanup()
Dispose of the SQLAlchemy engine.
execute_query
types.SQLAlchemySource.execute_query(query)
Execute SQL query and return results as DataFrame.
Parameters
| query |
str |
SQL query to execute |
required |
Returns
|
nw.DataFrame |
Query results as narwhals DataFrame |
Raises
|
UnsafeQueryError |
If the query starts with a disallowed SQL operation |
get_data
types.SQLAlchemySource.get_data()
Return the unfiltered data as a DataFrame.
Returns
|
nw.DataFrame |
The complete dataset as narwhals DataFrame |
get_db_type
types.SQLAlchemySource.get_db_type()
Get the database type.
Returns the specific database type (e.g., POSTGRESQL, MYSQL, SQLITE) by inspecting the SQLAlchemy engine. Removes ” SQL” suffix if present.
get_schema
types.SQLAlchemySource.get_schema(categorical_threshold)
Generate schema information from database table.
Parameters
| categorical_threshold |
int |
Maximum number of unique values for a text column to be considered categorical |
required |
Returns
|
str |
String describing the schema |
get_semantic_views_description
types.SQLAlchemySource.get_semantic_views_description()
Get information about semantic views (if any) for the system prompt.
test_query
types.SQLAlchemySource.test_query(query, *, require_all_columns=False)
Test query by fetching only one row.
Parameters
| query |
str |
SQL query to test |
required |
| require_all_columns |
bool |
If True, validates that result includes all original table columns |
False |
Returns
|
nw.DataFrame |
Query results with at most one row |
Raises
|
UnsafeQueryError |
If the query starts with a disallowed SQL operation |
|
MissingColumnsError |
If require_all_columns is True and result is missing required columns |