QueryChat

QueryChat(
    data_source,
    table_name,
    *,
    id=None,
    greeting=None,
    client=None,
    tools=('update', 'query'),
    data_description=None,
    categorical_threshold=20,
    extra_instructions=None,
    prompt_template=None,
)

Create a QueryChat instance.

QueryChat enables natural language interaction with your data through an LLM-powered chat interface. It can be used in Shiny applications, as a standalone chat client, or in an interactive console.

Examples

Basic Shiny app:

from querychat import QueryChat

qc = QueryChat(my_dataframe, "my_data")
qc.app()

Standalone chat client:

from querychat import QueryChat
import pandas as pd

df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
qc = QueryChat(df, "my_data")

# Get a chat client with all tools
client = qc.client()
response = client.chat("What's the average of column a?")

# Start an interactive console chat
qc.console()

Privacy-focused mode: Only allow dashboard filtering, ensuring the LLM can’t see any raw data.

qc = QueryChat(df, "my_data", tools="update")
qc.app()

Parameters

Name Type Description Default
data_source IntoFrame | sqlalchemy.Engine Either a Narwhals-compatible data frame (e.g., Polars or Pandas) or a SQLAlchemy engine containing the table to query against. required
table_name str If a data_source is a data frame, a name to use to refer to the table in SQL queries (usually the variable name of the data frame, but it doesn’t have to be). If a data_source is a SQLAlchemy engine, the table_name is the name of the table in the database to query against. required
id Optional[str] An optional ID for the QueryChat module. If not provided, an ID will be generated based on the table_name. None
greeting Optional[str | Path] A string in Markdown format, containing the initial message. If a pathlib.Path object is passed, querychat will read the contents of the path into a string with .read_text(). You can use querychat.greeting() to help generate a greeting from a querychat configuration. If no greeting is provided, one will be generated at the start of every new conversation. None
client Optional[str | chatlas.Chat] A chatlas.Chat object or a string to be passed to chatlas.ChatAuto()’s provider_model parameter, describing the provider and model combination to use (e.g. "openai/gpt-4.1", “anthropic/claude-sonnet-4-5”, “google/gemini-2.5-flash”. etc). If client is not provided, querychat consults the QUERYCHAT_CLIENT environment variable. If that is not set, it defaults to "openai". None
tools TOOL_GROUPS | tuple[TOOL_GROUPS, …] | None Which querychat tools to include in the chat client by default. Can be: - A single tool string: "update" or "query" - A tuple of tools: ("update", "query") - None or () to disable all tools Default is ("update", "query") (both tools enabled). Set to "update" to prevent the LLM from accessing data values, only allowing dashboard filtering without answering questions. The tools can be overridden per-client by passing a different tools parameter to the .client() method. ('update', 'query')
data_description Optional[str | Path] Description of the data in plain text or Markdown. If a pathlib.Path object is passed, querychat will read the contents of the path into a string with .read_text(). None
categorical_threshold int Threshold for determining if a column is categorical based on number of unique values. 20
extra_instructions Optional[str | Path] Additional instructions for the chat model. If a pathlib.Path object is passed, querychat will read the contents of the path into a string with .read_text(). None
prompt_template Optional[str | Path] Path to or a string of a custom prompt file. If not provided, the default querychat template will be used. This should be a Markdown file that contains the system prompt template. The mustache template can use the following variables: - {db_engine}: The database engine used (e.g., “DuckDB”) - {schema}: The schema of the data source, generated by data_source.get_schema() - {data_description}: The optional data description provided - {extra_instructions}: Any additional instructions provided None

Attributes

Name Description
data_source Get the current data source.
system_prompt Get the system prompt.

Methods

Name Description
app Quickly chat with a dataset.
cleanup Clean up resources associated with the data source.
client Create a chat client with registered tools.
console Launch an interactive console chat with the data.
generate_greeting Generate a welcome greeting for the chat.
server Initialize Shiny server logic.
sidebar Create a sidebar containing the querychat UI.
ui Create the UI for the querychat component.

app

QueryChat.app(bookmark_store='url')

Quickly chat with a dataset.

Creates a Shiny app with a chat sidebar and data table view – providing a quick-and-easy way to start chatting with your data.

Parameters

Name Type Description Default
bookmark_store Literal['url', 'server', 'disable'] The bookmarking store to use for the Shiny app. Options are: - "url": Store bookmarks in the URL (default). - "server": Store bookmarks on the server. - "disable": Disable bookmarking. 'url'

Returns

Name Type Description
App A Shiny App object that can be run with app.run() or served with shiny run.

cleanup

QueryChat.cleanup()

Clean up resources associated with the data source.

Call this method when you are done using the QueryChat object to close database connections and avoid resource leaks.

Returns

Name Type Description
None

client

QueryChat.client(tools=MISSING, update_dashboard=None, reset_dashboard=None)

Create a chat client with registered tools.

This method creates a standalone chat client configured with the specified tools and callbacks. Each call returns an independent client instance with its own conversation state.

Parameters

Name Type Description Default
tools TOOL_GROUPS | tuple[TOOL_GROUPS, …] | None | MISSING_TYPE Which tools to include: "update", "query", or both. Can be: - A single tool string: "update" or "query" - A tuple of tools: ("update", "query") - None or () to skip adding any tools - If not provided (default), uses the tools specified during initialization MISSING
update_dashboard Callable[[UpdateDashboardData], None] | None Optional callback function to call when the update_dashboard tool succeeds. Takes a dict with "query" and "title" keys. Only used if "update" is in tools. None
reset_dashboard Callable[[], None] | None Optional callback function to call when the tool_reset_dashboard is invoked. Takes no arguments. Only used if "update" is in tools. None

Returns

Name Type Description
chatlas.Chat A configured chat client with tools registered based on the tools parameter.

Examples

from querychat import QueryChat
import pandas as pd

df = pd.DataFrame({"a": [1, 2, 3]})
qc = QueryChat(df, "my_data")

# Create client with all tools (default)
client = qc.client()
response = client.chat("What's the average of column a?")

# Create client with only query tool (single string)
client = qc.client(tools="query")

# Create client with only query tool (tuple)
client = qc.client(tools=("query",))

# Create client with custom callbacks
from querychat import UpdateDashboardData


def my_update(data: UpdateDashboardData):
    print(f"Query: {data['query']}, Title: {data['title']}")


client = qc.client(update_dashboard=my_update)

console

QueryChat.console(new=False, tools='query', **kwargs)

Launch an interactive console chat with the data.

This method provides a REPL (Read-Eval-Print Loop) interface for chatting with your data from the command line. The console session persists by default, so you can exit and return to continue your conversation.

Parameters

Name Type Description Default
new bool If True, creates a new chat client and starts a fresh conversation. If False (default), continues the conversation from the previous console session. False
tools TOOL_GROUPS | tuple[TOOL_GROUPS, …] | None Which tools to include: “update”, “query”, or both. Can be: - A single tool string: "update" or "query" - A tuple of tools: ("update", "query") - None or () to skip adding any tools - If not provided (default), defaults to ("query",) only for privacy (prevents the LLM from accessing data values) Ignored if new=False and a console session already exists. 'query'
**kwargs Additional arguments passed to the client() method when creating a new client. {}

Examples

from querychat import QueryChat
import pandas as pd

df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
qc = QueryChat(df, "my_data")

# Start console (query tool only by default)
qc.console()

# Start fresh console with all tools (using tuple)
qc.console(new=True, tools=("update", "query"))

# Start fresh console with all tools (using single string for one tool)
qc.console(new=True, tools="query")

# Continue previous console session
qc.console()  # picks up where you left off

generate_greeting

QueryChat.generate_greeting(echo='none')

Generate a welcome greeting for the chat.

By default, QueryChat() generates a greeting at the start of every new conversation, which is convenient for getting started and development, but also might add unnecessary latency and cost. Use this method to generate a greeting once and save it for reuse.

Parameters

Name Type Description Default
echo Literal['none', 'output'] If echo = "output", prints the greeting to standard output. If echo = "none" (default), does not print anything. 'none'

Returns

Name Type Description
The greeting string (in Markdown format).

server

QueryChat.server(enable_bookmarking=False, id=None)

Initialize Shiny server logic.

This method is intended for use in Shiny Code mode, where the user must explicitly call .server() within the Shiny server function. In Shiny Express mode, you can use querychat.express.QueryChat instead of querychat.QueryChat, which calls .server() automatically.

Parameters

Name Type Description Default
enable_bookmarking bool Whether to enable bookmarking for the querychat module. False
id Optional[str] Optional module ID for the QueryChat instance. If not provided, will use the ID provided at initialization. This must match the ID used in the .ui() or .sidebar() methods. None

Examples

from shiny import App, render, ui
from seaborn import load_dataset
from querychat import QueryChat

titanic = load_dataset("titanic")

qc = QueryChat(titanic, "titanic")


def app_ui(request):
    return ui.page_sidebar(
        qc.sidebar(),
        ui.card(
            ui.card_header(ui.output_text("title")),
            ui.output_data_frame("data_table"),
        ),
        title="Titanic QueryChat App",
        fillable=True,
    )


def server(input, output, session):
    qc_vals = qc.server(enable_bookmarking=True)

    @render.data_frame
    def data_table():
        return qc_vals.df()

    @render.text
    def title():
        return qc_vals.title() or "My Data"


app = App(app_ui, server, bookmark_store="url")

Returns

Name Type Description
ServerValues A ServerValues dataclass containing session-specific reactive values and the chat client. See ServerValues documentation for details on the available attributes.

sidebar

QueryChat.sidebar(width=400, height='100%', fillable=True, id=None, **kwargs)

Create a sidebar containing the querychat UI.

Parameters

Name Type Description Default
width int Width of the sidebar in pixels. 400
height str Height of the sidebar. '100%'
fillable bool Whether the sidebar should be fillable. Default is True. True
id Optional[str] Optional ID for the QueryChat instance. If not provided, will use the ID provided at initialization. None
**kwargs Additional arguments passed to shiny.ui.sidebar(). {}

Returns

Name Type Description
ui.Sidebar A sidebar UI component.

ui

QueryChat.ui(id=None, **kwargs)

Create the UI for the querychat component.

Parameters

Name Type Description Default
id Optional[str] Optional ID for the QueryChat instance. If not provided, will use the ID provided at initialization. None
**kwargs Additional arguments to pass to shinychat.chat_ui(). {}

Returns

Name Type Description
A UI component.