Define a schema with integer fields and generate test data:
import pointblank as pb# Define a schema with integer field specificationsschema = pb.Schema( user_id=pb.int_field(min_val=1, unique=True), age=pb.int_field(min_val=0, max_val=120), rating=pb.int_field(allowed=[1, 2, 3, 4, 5]),)# Generate 100 rows of test datapb.preview(pb.generate_dataset(schema, n=100, seed=23))
PolarsRows100Columns3
user_id
Int64
age
Int64
rating
Int64
1
7188536481533917197
118
3
2
2674009078779859984
99
1
3
7652102777077138151
37
1
4
157503859921753049
114
5
5
2829213282471975080
106
3
96
7027508096731143831
36
2
97
6055996548456656575
69
1
98
3822709996092631588
39
2
99
1522653102058131295
114
1
100
5690877051669225499
99
5
The generated data will have unique user IDs starting from 1, ages between 0-120, and ratings sampled from the allowed values.