Create a boolean column specification.
USAGE
bool_field(
p_true=0.5,
nullable=False,
null_probability=0.0,
unique=False,
generator=None,
)
Parameters
p_true : float = 0.5
-
Probability of generating True. Default is 0.5 (equal probability). Must be between 0.0 and 1.0.
nullable : bool = False
-
Whether the column can contain null values. Default is False.
null_probability : float = 0.0
-
Probability of generating null when nullable=True. Default is 0.0.
unique : bool = False
-
Whether all values must be unique. Default is False. Note: Boolean can only have 2 unique non-null values.
generator : Callable[[], Any] | None = None
-
Custom callable that generates values. Overrides other settings.
Returns
BoolField
-
A boolean field specification.
Examples
Define a schema with boolean fields and generate test data:
import pointblank as pb
# Define a schema with boolean field specifications
schema = pb.Schema(
is_active=pb.bool_field(p_true=0.8), # 80% True
is_premium=pb.bool_field(p_true=0.2), # 20% True
is_verified=pb.bool_field(), # 50% True (default)
)
# Generate 100 rows of test data
pb.preview(pb.generate_dataset(schema, n=100, seed=23))
|
|
|
|
|
| 1 |
False |
False |
False |
| 2 |
False |
False |
False |
| 3 |
False |
False |
False |
| 4 |
True |
True |
True |
| 5 |
True |
False |
False |
| 96 |
True |
False |
True |
| 97 |
True |
False |
True |
| 98 |
False |
False |
False |
| 99 |
False |
False |
False |
| 100 |
False |
False |
False |
The p_true= parameter controls the probability of generating True values, which is helpful for simulating real-world distributions.
⦾