
Posit Software, PBC

R Programming
Part of "Introduction to Positron" workshop

https://creativecommons.org/licenses/by-sa/4.0/

An R session in the Console

R interpreter sessions

• Positron readily discovers and offers multiple versions of R

• Positron can have multiple, concurrent interpreter sessions, that can be

• a mix of different R versions

• a mix of R and Python sessions

• multiple instances of a single R version

Why is it useful to have multiple R versions?

• If you are responsible for R code that must run "elsewhere" or that was developed in
the past

• You maintain a package and other users might have different R versions

• You maintain a data product that gets deployed to a server

• You develop code that's meant to run in some other, high performance environment

• You need to revisit an analysis that was crafted 1-2 years ago

• Having multiple R versions locally helps you replicate and solve issues arising from
interactions between your code and another R version

Why is it useful to have multiple R sessions?

• Put a long-running task in its own session, while you continue interactive
work in another session

• Live comparison between, e.g., 2 different R versions or 2 different
versions of an R package

• Develop a self-contained document, e.g., a vignette, in one session, while
you continue casual interactive work in another session

• Do you have more use cases?

How do you end up with multiple R versions?

• Highly recommended tool:

• rig: The R Installation Manager

• rig is not part of Positron, they just work well together

• rig is especially important for macOS users

• It is almost impossible to have multiple, functional R versions on macOS
if you just install R from CRAN

https://github.com/r-lib/rig

Other joys of rig

• Out-of-the-box set-up of default CRAN mirror

• Creates and configures user-level, R-version-specific package libraries

• Installs pak, a nifty R package for package installation

• Updates macOS R installation so you can use lldb to debug C / C++ code

• Installs appropriate Rtools versions on Windows

• Tidies up R-related cruft in the Windows registry

• Create 2 (or more!) concurrent R sessions of the same or different versions

• Create different objects in each session and explore how that plays out in the
Variables pane

• Restart 1 session (but not the other(s)). What do you see in the Variables pane
now?

• Click the ⓘ in the Console action bar to see session metadata. Can you find the

R executable path?

• Can you figure out how to rename an R session?

Multiple R sessions (option 1 of 2)
Your turn

• Install rig: https://github.com/r-lib/rig. Note the docs in repo's README.

• Use rig to list your existing R versions. Which one is the system default?

• Ask rig to list all available R versions.

• Install another R version. Make it the new default (or not).

• Launch Positron and see that the new R version is now also available.

• Consider going back to your previous default R version.

Multiple R versions (option 2 of 2)
Your turn

https://github.com/r-lib/rig

Air formatter for R

• https://posit-dev.github.io/air/

• When you install Positron, you get Air "for free"

• We will look at a talk given by Lionel Henry on May 19, 2025 at the
Rencontres R conference

• https://rr2025.sciencesconf.org/

https://posit-dev.github.io/air/
https://rr2025.sciencesconf.org/

Air + Positron: practical suggestions

• Air extension ships with Positron and includes the Air binary. Air should just work.

• usethis::use_air()* does configuration in the active project which says "we use Air to
format the R code in this project".

• Do this once: Command palette > Air: Format Workspace Folder. Inspect diffs, commit, push.

• Going forward, "Format on Save" keeps the code well-formatted.

• Positron commands that may be helpful in other situations: Format Document, Format
Selection.

• There are various ways to disable Air formatting of a specific, e.g., line or file.

* Currently requires dev version of usethis

https://usethis.r-lib.org/dev/reference/use_air.html

• The example project we downloaded earlier has a file with poorly formatted
R code: air-practice.R

• Open it in Positron. Alternatively, open a personal R file with questionable
formatting.

• Remove the # fmt: skip file line, so that Air will format the file.

• Experiment with the Format Selection and/or Format Document commands to
see how Air would reformat it.

• The Git diff is a great way to see what's changed.

Format some ugly R code
Your turn

Snippets

• Positron's R support provides a few snippets related to R's reserved words.

• Positron provides fewer built-in snippets than RStudio.

• You can configure additional snippets at the user or workspace level.

• Positron uses TextMate syntax for snippets, inherited from VS Code. This is
different from RStudio's snippet syntax.

• Snippets are typically inserted via the usual completions offered by IntelliSense.
There's also a dedicated command: Insert Snippet.

• https://positron.posit.co/r-snippets.html

https://positron.posit.co/r-snippets.html

Built-in snippet example: for loop

👆helps you create code like 👇

for (variable in vector) {
 # code to repeat
}

How to configure your own snippets

1. Global Snippets file: User-level.
Potentially more than 1 language.

2. Workspace-specific file: Specific to 1
workspace. Potentially more than 1
language.

3. Language-specific file: User-level.

Command palette: Snippets: Configure Snippets

https://positron.posit.co/r-snippets.html

https://positron.posit.co/r-snippets.html

• In a scratch R file, insert a few of the built-in snippets. Inspiration:

• Write a for loop

• Write an if or if-else construction

• Define a function

• Optional: Configure your own snippet, e.g. bring one over that you enjoy in
RStudio.

Explore R snippets
Your turn

Debugging

• Positron supports debugging R code via these mechanisms

• debug()

• debugonce()

• browser()

• Breakpoints do not work yet, but that will happen soon.

• Walk through the fruit debugging example from a talk:

• https://github.com/jennybc/debugging

• See fruit-debugging.R in the example project downloaded earlier

Debugging with browser(), debug(), debugonce()
Demo

https://github.com/jennybc/debugging/

