import pointblank as pb
import polars as pl
= pl.DataFrame(
tbl
{"a": [7, 8, 1, 9, 1, 7],
"b": [1, 8, 2, 6, 9, 1],
}
)
pb.preview(tbl)
Validate.col_vals_not_in_set
Validate.col_vals_not_in_set(
columns,set,
=None,
pre=None,
thresholds=True,
active )
Validate whether column values are not in a set of values.
The col_vals_not_in_set()
validation method checks whether column values in a table are not part of a specified set=
of values. This validation will operate over the number of test units that is equal to the number of rows in the table (determined after any pre=
mutation has been applied).
Parameters
columns : str | list[str] | Column | ColumnSelector | ColumnSelectorNarwhals
-
A single column or a list of columns to validate. Can also use
col()
with column selectors to specify one or more columns. If multiple columns are supplied or resolved, there will be a separate validation step generated for each column. set : list[float | int]
-
A list of values to compare against.
pre : Callable | None = None
-
A pre-processing function or lambda to apply to the data table for the validation step.
thresholds : int | float | bool | tuple | dict | Thresholds = None
-
Failure threshold levels so that the validation step can react accordingly when exceeding the set levels for different states (
warn
,stop
, andnotify
). This can be created simply as an integer or float denoting the absolute number or fraction of failing test units for the ‘warn’ level. Otherwise, you can use a tuple of 1-3 values, a dictionary of 1-3 entries, or a Thresholds object. active : bool = True
-
A boolean value indicating whether the validation step should be active. Using
False
Returns
: Validate
-
The
Validate
object with the added validation step.
Examples
For the examples here, we’ll use a simple Polars DataFrame with two numeric columns (a
and b
). The table is shown below:
Let’s validate that none of the values in column a
are in the set of [2, 3, 4, 5, 6]
. We’ll determine if this validation had any failing test units (there are six test units, one for each row).
= (
validation =tbl)
pb.Validate(data="a", set=[2, 3, 4, 5, 6])
.col_vals_not_in_set(columns
.interrogate()
)
validation
STEP | COLUMNS | VALUES | TBL | EVAL | UNITS | PASS | FAIL | W | S | N | EXT | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
#4CA64C | 1 |
|
✓ | 6 | 6 1.00 |
0 0.00 |
— | — | — | — |
Printing the validation
object shows the validation table in an HTML viewing environment. The validation table shows the single entry that corresponds to the validation step created by using col_vals_not_in_set()
. All test units passed, and there are no failing test units.
Now, let’s use that same set of values for a validation on column b
.
= (
validation =tbl)
pb.Validate(data="b", set=[2, 3, 4, 5, 6])
.col_vals_not_in_set(columns
.interrogate()
)
validation
The validation table reports two failing test units. The specific failing cases are for the column b
values of 2
and 6
, both of which are in the set of [2, 3, 4, 5, 6]
.