Use date/datetime-based validations to ensure your data is current and within expected time ranges.
Pointblank Validation
2025-06-22|01:26:51
Polars
STEP
COLUMNS
VALUES
TBL
EVAL
UNITS
PASS
FAIL
W
E
C
EXT
#4CA64C
1
specially()
Recent data availability check: there is data in the last 3 days.
EXPR
✓
1
1 1.00
0 0.00
—
—
—
—
#4CA64C66
2
col_vals_between()
Date range validation.
timestamp
[2021-01-01, 2023-12-31]
✓
50.0K
49.6K 0.99
374 0.01
—
—
—
#4CA64C66
3
col_vals_not_null()
No missing timestamps.
timestamp
—
✓
50.0K
49.7K 0.99
320 0.01
—
—
—
2025-06-22 01:26:51 UTC< 1 s2025-06-22 01:26:51 UTC
import pointblank as pbimport polars as plfrom datetime import date, timedelta# Supposing it is 2023-12-31, there should be data available in the last 3 dayscutoff_date = date(2023, 12, 31) - timedelta(days=3)validation = ( pb.Validate( data=pb.load_dataset(dataset="global_sales", tbl_type="polars") ) .specially( expr=lambda df: df.filter(pl.col("timestamp") >= cutoff_date).height >0, brief="Recent data availability check: there is data in the last 3 days." ) .col_vals_between( columns="timestamp", left="2021-01-01", right="2023-12-31", brief="Date range validation." ) .col_vals_not_null( columns="timestamp", brief="No missing timestamps." ) .interrogate())validation