from great_tables import GT, md, html
from great_tables.data import islands
= islands.head(10) islands_mini
Intro
The Great Tables package is all about making it simple to produce nice-looking display tables. Display tables? Well yes, we are trying to distinguish between data tables (i.e., DataFrames) and those tables you’d find in a web page, a journal article, or in a magazine. Such tables can likewise be called presentation tables, summary tables, or just tables really. Here are some examples, ripped straight from the web:
We can think of display tables as output only, where we’d not want to use them as input ever again. Other features include annotations, table element styling, and text transformations that serve to communicate the subject matter more clearly.
Let’s Install
The installation really couldn’t be much easier. Use this:
pip install great_tables
A Basic Table using Great Tables
The example below requires the Pandas library to be installed. But Pandas is not required to use Great Tables. You can also use a Polars DataFrame.
Let’s use a subset of the islands
dataset available within great_tables.data
:
The islands
data is a simple Pandas DataFrame with 2 columns and that’ll serve as a great start. Speaking of which, the main entry point into the Great Tables API is the GT
class. Let’s use that to make a presentable table:
# Create a display table showing ten of the largest islands in the world
= GT(islands_mini)
gt_tbl
# Show the output table
gt_tbl
name | size |
---|---|
Africa | 11506 |
Antarctica | 5500 |
Asia | 16988 |
Australia | 2968 |
Axel Heiberg | 16 |
Baffin | 184 |
Banks | 23 |
Borneo | 280 |
Britain | 84 |
Celebes | 73 |
That doesn’t look too bad! Sure, it’s basic but we really didn’t really ask for much. We did receive a proper table with column labels and the data. Oftentimes however, you’ll want a bit more: a Table header, a Stub, and sometimes source notes in the Table Footer component.
Polars DataFrame support
GT
accepts both Pandas and Polars DataFrames. You can pass a Polars DataFrame to GT
, or use its DataFrame.style
property.
import polars as pl
= pl.from_pandas(islands_mini)
df_polars
# Approach 1: call GT ----
GT(df_polars)
# Approach 2: Polars style property ----
df_polars.style
name | size |
---|---|
Africa | 11506 |
Antarctica | 5500 |
Asia | 16988 |
Australia | 2968 |
Axel Heiberg | 16 |
Baffin | 184 |
Banks | 23 |
Borneo | 280 |
Britain | 84 |
Celebes | 73 |
The polars.DataFrame.style
property is currently considered unstable, and may change in the future. Using GT
on a Polars DataFrame will always work.
Some Beautiful Examples
In the following pages we’ll use Great Tables to turn DataFrames into beautiful tables, like the ones below.
Show the Code
from great_tables import GT, md, html
from great_tables.data import islands
= islands.head(10)
islands_mini
(= "name")
GT(islands_mini, rowname_col
.tab_header(="Large Landmasses of the World",
title="The top ten largest are presented"
subtitle
)
.tab_source_note(="Source: The World Almanac and Book of Facts, 1975, page 406."
source_note
)
.tab_source_note(=md("Reference: McNeil, D. R. (1977) *Interactive Data Analysis*. Wiley.")
source_note
)="landmass")
.tab_stubhead(label )
Large Landmasses of the World | |
The top ten largest are presented | |
landmass | size |
---|---|
Africa | 11506 |
Antarctica | 5500 |
Asia | 16988 |
Australia | 2968 |
Axel Heiberg | 16 |
Baffin | 184 |
Banks | 23 |
Borneo | 280 |
Britain | 84 |
Celebes | 73 |
Source: The World Almanac and Book of Facts, 1975, page 406. | |
Reference: McNeil, D. R. (1977) Interactive Data Analysis. Wiley. |
Show the Code
from great_tables import GT, html
from great_tables.data import airquality
= airquality.head(10).assign(Year=1973)
airquality_m
= (
gt_airquality
GT(airquality_m)
.tab_header(="New York Air Quality Measurements",
title="Daily measurements in New York City (May 1-10, 1973)",
subtitle
)="Time", columns=["Year", "Month", "Day"])
.tab_spanner(label="Measurement", columns=["Ozone", "Solar_R", "Wind", "Temp"])
.tab_spanner(label=["Year", "Month", "Day"])
.cols_move_to_start(columns
.cols_label(=html("Ozone,<br>ppbV"),
Ozone=html("Solar R.,<br>cal/m<sup>2</sup>"),
Solar_R=html("Wind,<br>mph"),
Wind=html("Temp,<br>°F"),
Temp
)
)
gt_airquality
New York Air Quality Measurements | ||||||
Daily measurements in New York City (May 1-10, 1973) | ||||||
Time | Measurement | |||||
---|---|---|---|---|---|---|
Year | Month | Day | Ozone, ppbV |
Solar R., cal/m2 |
Wind, mph |
Temp, °F |
1973 | 5 | 1 | 41.0 | 190.0 | 7.4 | 67 |
1973 | 5 | 2 | 36.0 | 118.0 | 8.0 | 72 |
1973 | 5 | 3 | 12.0 | 149.0 | 12.6 | 74 |
1973 | 5 | 4 | 18.0 | 313.0 | 11.5 | 62 |
1973 | 5 | 5 | 14.3 | 56 | ||
1973 | 5 | 6 | 28.0 | 14.9 | 66 | |
1973 | 5 | 7 | 23.0 | 299.0 | 8.6 | 65 |
1973 | 5 | 8 | 19.0 | 99.0 | 13.8 | 59 |
1973 | 5 | 9 | 8.0 | 19.0 | 20.1 | 61 |
1973 | 5 | 10 | 194.0 | 8.6 | 69 |